FINAL JEE(Advanced) EXAMINATION - 2022
 (Held On Sunday 28 ${ }^{\text {th }}$ AUGUST, 2022)
 PAPER-1
 IEST PAPER WIIH SOLUIION

CHEMISTRY

SECTION-1 : (Maximum Marks : 24)

- This section contains EIGHT (08) questions.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks
$:+3$ ONLY if the correct numerical value is entered;
Zero Marks : 0 In all other cases.

1. 2 mol of $\mathrm{Hg}(\mathrm{g})$ is combusted in a fixed volume bomb calorimeter with excess of O_{2} at 298 K and 1 atm into $\mathrm{HgO}(\mathrm{s})$. During the reaction, temperature increases from 298.0 K to 312.8 K . If heat capacity of the bomb calorimeter and enthalpy of formation of $\mathrm{Hg}(\mathrm{g})$ are $20.00 \mathrm{~kJ} \mathrm{~K}^{-1}$ and $61.32 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at 298 K , respectively, the calculated standard molar enthalpy of formation of $\mathrm{HgO}(\mathrm{s})$ at $298 \mathrm{~K}^{2}$ is $\mathrm{X} \mathrm{kJ} \mathrm{mol}^{-1}$. The value of $|\mathrm{X}|$ is \qquad .
[Given : Gas constant $\mathrm{R}=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$]
Ans. (90.39)
Sol. $\mathrm{Q}_{\mathrm{rxn}}=\mathrm{C} \Delta \mathrm{T}$
$|\Delta \mathrm{U}| \times 2=20 \times 14.8$
$|\Delta \mathrm{U}|=148 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{U}=-148 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{Hg}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{HgO}(\mathrm{s}): \Delta \mathrm{U}=-148 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{H}=\Delta \mathrm{U}+\Delta \mathrm{n}_{\mathrm{g}} \mathrm{RT}$
$=-148-\frac{3}{2} \times \frac{8.3}{1000} \times 298=-151.7101$
$\mathrm{Hg}(\mathrm{l})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{HgO}(\mathrm{s})$
$\Delta \mathrm{H}=-151.7101+61.32=-90.39 \mathrm{~kJ} / \mathrm{mol}$
Ans. 90.39
2. The reduction potential $\left(E^{0}\right.$, in V$)$ of $\mathrm{MnO}_{4}^{-}(\mathrm{aq}) / \mathrm{Mn}(\mathrm{s})$ is \qquad .
$\left[\right.$ Given : $\left.E_{\left(\mathrm{MnO}_{4}^{-}(\mathrm{aq}) / \mathrm{MnO}_{2}(\mathrm{~s})\right)}^{0}=1.68 \mathrm{~V} ; E_{\left(\mathrm{MnO}_{2}(\mathrm{~s}) / \mathrm{Mn}^{2+}(\mathrm{aqq})\right)}^{0}=1.21 \mathrm{~V} ; E_{\left(\mathrm{Mn}^{2+}(\mathrm{aq}) / \mathrm{Mn}(\mathrm{s})\right)}^{0}=-1.03 \mathrm{~V}\right]$
Ans. (0.77)
Sol.

For the required reaction $\Delta \mathrm{G}^{\circ}=\Delta \mathrm{G}^{\circ}{ }_{1}+\Delta \mathrm{G}^{\circ}{ }_{2}+\Delta \mathrm{G}^{\circ}{ }_{3}$
$\Rightarrow 7 \times \mathrm{E}=1.68 \times 3+1.21 \times 2+(-1.03) \times 2$
$\mathrm{E}=\frac{5.4}{7}=0.7714$
Ans. $=0.77$
3. A solution is prepared by mixing 0.01 mol each of $\mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{NaHCO}_{3}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, and NaOH in 100 mL of water. pH of the resulting solution is \qquad .
[Given : $p \mathrm{~K}_{\mathrm{a} 1}$ and $p \mathrm{~K}_{\mathrm{a} 2}$ of $\mathrm{H}_{2} \mathrm{CO}_{3}$ are 6.37 and 10.32, respectively ; $\log 2=0.30$]
Ans. (10.02)
Sol.

$$
\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{NaOH} \longrightarrow \mathrm{NaHCO}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

Milli moles

$$
10
$$

$$
10
$$

At end $\quad 0 \quad 0 \quad 10+10=20$
Final mixture has 20 milli moles NaHCO_{3} and 10 milli moles $\mathrm{Na}_{2} \mathrm{CO}_{3}$
$\mathrm{pH}=\mathrm{pKa}_{2}+\log \frac{\text { Salt }}{\text { Acid }}$
$\mathrm{pH}=\mathrm{pKa}_{2}+\log \left(\frac{10}{20}\right) \quad\left[\right.$ Buffer : $\left.\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{NaHCO}_{3}\right]$
$=10.32-\log 2=10.02$
4. The treatment of an aqueous solution of 3.74 g of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ with excess KI results in a brown solution along with the formation of a precipitate. Passing $\mathrm{H}_{2} \mathrm{~S}$ through this brown solution gives another precipitate X . The amount of X (in g) is \qquad .
[Given : Atomic mass of $\mathrm{H}=1, \mathrm{~N}=14, \mathrm{O}=16, \mathrm{~S}=32, \mathrm{~K}=39, \mathrm{Cu}=63, \mathrm{I}=127$]
Ans. (0.32)
Sol. $2 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+5 \mathrm{KI} \longrightarrow \mathrm{Cu}_{2} \mathrm{I}_{2}+\mathrm{KI}_{3}+4 \mathrm{KNO}_{3}$

$$
0.02
$$

0.01
$\mathrm{KI}_{3}+\mathrm{H}_{2} \mathrm{~S} \longrightarrow \mathrm{~S} \downarrow+\mathrm{KI}+2 \mathrm{HI}$
$0.01 \quad 0.01$
$\mathrm{n}_{\mathrm{S}}=0.01 \mathrm{~mole}$
weight of sulphur $=32 \times 0.01=0.32 \mathrm{gm}$
5. Dissolving 1.24 g of white phosphorous in boiling NaOH solution in an inert atmosphere gives a gas \mathbf{Q}. The amount of CuSO_{4} (ing) required to completely consume the gas \mathbf{Q} is \qquad .
[Given : Atomic mass of $\mathrm{H}=1, \mathrm{O}=16, \mathrm{Na}=23, \mathrm{P}=31, \mathrm{~S}=32, \mathrm{Cu}=63$]
Ans. (2.38 / 2.39)
Sol. Mole of $\mathrm{P}_{4}=\frac{1.24}{31 \times 4}=0.01$
$\mathrm{P}_{4}+3 \mathrm{NaOH}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{PH}_{3}+3 \mathrm{NaH}_{2} \mathrm{PO}_{2}$
0.01 mole $\quad 0.01$ mole
$2 \mathrm{PH}_{3}+3 \mathrm{CuSO}_{4} \rightarrow \mathrm{Cu}_{3} \mathrm{P}_{2}+3 \mathrm{H}_{2} \mathrm{SO}_{4}$
$0.01 \quad \frac{3}{2} \times 0.01$

$$
=\frac{0.03}{2} \text { moles }
$$

$\mathrm{W}_{\mathrm{CuSO}_{4}}=\frac{0.03}{2} \times 159=2.385 \mathrm{gm}$
Ans. $=2.38$ or 2.39
6. Consider the following reaction.

On estimation of bromine in 1.00 g of \mathbf{R} using Carius method, the amount of AgBr formed (in g) is
\qquad
[Given : Atomic mass of $\mathrm{H}=1, \mathrm{C}=12, \mathrm{O}=16, \mathrm{P}=31, \mathrm{Br}=80, \mathrm{Ag}=108$]
Ans. (1.50)

Sol.

1g R $\rightarrow \frac{1}{250}$ moles
No. of Br Atoms $\rightarrow \frac{2}{250}$ moles
Moles of $\mathrm{AgBr} \rightarrow \frac{2}{250}$ moles
Mass of $\mathrm{AgBr}=\frac{2}{250} \times(108+80)=1.504$
7. The weight percentage of hydrogen in \mathbf{Q}, formed in the following reaction sequence, is \qquad .

[Given : Atomic mass of $\mathrm{H}=1, \mathrm{C}=12, \mathrm{~N}=14, \mathrm{O}=16, \mathrm{~S}=32, \mathrm{Cl}=35$]
Ans. (1.31)

Sol.

8. If the reaction sequence given below is carried out with 15 moles of acetylene, the amount of the product \mathbf{D} formed (in g) is \qquad .

The yields of $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} are given in parentheses.
[Given : Atomic mass of $\mathrm{H}=1, \mathrm{C}=12, \mathrm{O}=16, \mathrm{Cl}=35$]
Ans. (136)
Sol.

SECTION-2 : (Maximum Marks : 24)

- This section contains SIX (06) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $\quad:+4$ ONLY if (all) the correct option(s) is(are) chosen;
Partial Marks : $:+3$ If all the four options are correct but ONLY three options are chosen;
Partial Marks $\quad:+2$ If three or more options are correct but ONLY two options are chosen, both of which are correct;
Partial Marks $\quad:+1$ If two or more options are correct but ONLY one option is chosen and it is a correct option;
Zero Marks $\quad: 0$ If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : -2 In all other cases.
9. For diatomic molecules, the correct statement(s) about the molecular orbitals formed by the overlap to two $2 p_{z}$ orbitals is(are)
(A) σ orbital has a total of two nodal planes.
(B) σ^{*} orbital has one node in the $x z$-plane containing the molecular axis.
(C) π orbital has one node in the plane which is perpendicular to the molecular axis and goes through the center of the molecule.
(D) π^{*} orbital has one node in the $x y$-plane containing the molecular axis.

Ans. (A,D)

Sol.
(A)

(B)

(C)

Zero node in the plane which is perpendicular to the molecular axis and goes through the center of the molecule
(D)

\qquad

π^{\star}-molecular orbital
One node in xy plane containing the molecular axis
10. The correct option(s) related to adsorption processes is(are)
(A) Chemisorption results in a unimolecular layer.
(B) The enthalpy change during physisorption is in the range of 100 to $140 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
(C) Chemisorption is an endothermic process.
(D) Lowering the temperature favors physisorption processes.

Ans. (A,D)
Sol. (A) Chemisorption is unimolecular layered.
(B) Enthalpy of physisorption is much less in magnitude.
(C) Chemisorption of gases on solids is exothermic.
(D) As physisorption is exothermic so lowering temperature favours it.
11. The electrochemical extraction of aluminum from bauxite ore involves.
(A) the reaction of $\mathrm{Al}_{2} \mathrm{O}_{3}$ with coke (C) at a temperature $>2500^{\circ} \mathrm{C}$.
(B) the neutralization of aluminate solution by passing CO_{2} gas to precipitate hydrated alumina $\left(\mathrm{Al}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}\right)$
(C) the dissolution of $\mathrm{Al}_{2} \mathrm{O}_{3}$ in hot aqueous NaOH .
(D) the electrolysis of $\mathrm{Al}_{2} \mathrm{O}_{3}$ mixed with $\mathrm{Na}_{3} \mathrm{AlF}_{6}$ to give Al and CO_{2}.

Ans. (B,C,D)

Sol. (A) Electrochemical extraction of Aluminum from bauxite done below $2500^{\circ} \mathrm{C}$
(B) $2 \mathrm{Na}\left[\mathrm{Al}(\mathrm{OH})_{4}\right]_{\mathrm{aq} .}+2 \mathrm{CO}_{2(\mathrm{~g})} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})} \downarrow+2 \mathrm{NaHCO}_{3 \text { (aq.) }}$

The sodium aluminate present in solution is neutralised by passing CO_{2} gas and hydrated $\mathrm{Al}_{2} \mathrm{O}_{3}$ is precipitated.
(C) $\mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}+2 \mathrm{NaOH}_{(\mathrm{aq.})}+3 \mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow 2 \mathrm{Na}\left[\mathrm{Al}(\mathrm{OH})_{4}\right]_{\text {aq. }}$.

Concentration of bauxite is carried out by heating the powdered ore with hot concentrated solution of NaOH
(D) In metallurgy of aluminum, $\mathrm{Al}_{2} \mathrm{O}_{3}$ is mixed with $\mathrm{Na}_{3} \mathrm{AlF}_{6}$
12. The treatment of galena with HNO_{3} produces a gas that is
(A) paramagnetic
(B) bent in geometry
(C) an acidic oxide
(D) colorless

Ans. (A,D)
Sol. $3 \mathrm{PbS}+8 \mathrm{HNO}_{3} \rightarrow 3 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}+\mathrm{S}$
$\mathrm{NO} \Rightarrow$ Neutral oxide, Paramagnetic, Linear geometry, Colourless gas
13. Considering the reaction sequence given below, the correct statement(s) is(are)

(A) \mathbf{P} can be reduced to a primary alcohol using NaBH_{4}.
(B) Treating \mathbf{P} with conc. $\mathrm{NH}_{4} \mathrm{OH}$ solution followed by acidification gives \mathbf{Q}.
(C) Treating \mathbf{Q} with a solution of NaNO_{2} in aq. HCl liberates N_{2}.
(D) \mathbf{P} is more acidic than $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$.

Ans. (B,C,D)

Sol.

éSaral

14. Consider the following reaction sequence,

the correct option(s) is(are)
(A) $\mathbf{P}=\mathrm{H}_{2} / \mathrm{Pd}$, ethanol
$\mathbf{R}=\mathrm{NaNO}_{2} / \mathrm{HCl}$
(B) $\mathbf{P}=\mathrm{Sn} / \mathrm{HCl}$
$\mathbf{R}=\mathrm{HNO}_{2}$
$\begin{aligned} \mathbf{U}= & 1 . \mathrm{H}_{3} \mathrm{PO}_{2} \\ & \text { 2. } \mathrm{KMnO}_{4}-\mathrm{KOH} \text {, heat }\end{aligned}$

$\mathbf{U}=1 . \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
15. $\mathrm{KMnO}_{4}-\mathrm{KOH}$, heat
(D) $\mathbf{Q}=$

$\mathbf{R}=\mathrm{H}_{2} / \mathrm{Pd}$, ethanol
$\mathbf{T}=$

Ans. (A,B,C)
Sol.

SECTION-3 : (Maximum Marks : 12)

- This section contains FOUR (04) Matching List Sets.
- Each set has ONE Multiple Choice Question.
- Each set has TWO lists : List-I and List-II.
- List-I has Four entries (I), (II), (III) and (IV) and List-II has Five entries (P), (Q), (R), (S) and (T).
- FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY

ONE of these four options satisfies the condition asked in the Multiple Choice Question.

- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $\quad:+3$ ONLY if the option corresponding to the correct combination is chosen;
Zero Marks $\quad: 0$ If none of the options is chosen (i.e. the question is unanswered);
Negative Marks $\quad:-1$ In all other cases.
15. Match the rate expressions in LIST-I for the decomposition of X with the corresponding profiles provided in LIST-II. X_{s} and k constants having appropriate units.

LIST-I	LIST-II
(I)	
rate $=\frac{\mathrm{k}[\mathrm{X}]}{\mathrm{X}_{\mathrm{s}}+[\mathrm{X}]}$	
under all possible initial concentration of X	(P)
(II)	(Q)
rate $=\frac{\mathrm{k}[\mathrm{X}]}{\mathrm{X}_{\mathrm{s}}+[\mathrm{X}]}$	(R)
where initial concentration of X are	
much less than X_{s}	

(IV)
rate $=\frac{\mathrm{k}[\mathrm{X}]^{2}}{\mathrm{X}_{\mathrm{s}}+[\mathrm{X}]}$
where initial concentration of X is much higher than X_{s}

(A) I \rightarrow P; II \rightarrow Q; III \rightarrow S; IV \rightarrow T
(B) I \rightarrow R; II \rightarrow S; III \rightarrow S; IV \rightarrow T
(C) I \rightarrow P; II \rightarrow Q; III \rightarrow Q; IV $\rightarrow \mathrm{R}$
(D) I \rightarrow R; II \rightarrow S; III \rightarrow Q; IV \rightarrow R

Ans. (A)
Sol. (I) \quad rate $=\frac{k[x]}{x_{s}+[x]}=\frac{k}{\frac{x_{s}}{[x]}+1}$

$$
\begin{aligned}
& \text { If }[\mathrm{x}] \rightarrow \infty \Rightarrow \text { rate } \rightarrow \mathrm{k} \Rightarrow \text { order }=0 \\
& \Rightarrow \quad(\mathrm{I})-(\mathrm{R}),(\mathrm{P})
\end{aligned}
$$

(II) $[\mathrm{x}] \ll \mathrm{x}_{\mathrm{s}} \Rightarrow$ rate $=\frac{\mathrm{k}[\mathrm{x}]}{\mathrm{x}_{\mathrm{s}}} \Rightarrow$ order $=1$
$\Rightarrow \quad(\mathrm{II})-(\mathrm{Q}),(\mathrm{T})$
(III) $[\mathrm{x}] \gg \mathrm{x}_{\mathrm{s}} \Rightarrow$ rate $=\mathrm{k} \Rightarrow$ order $=0$

$$
\Rightarrow \quad(\mathrm{III})-(\mathrm{P}),(\mathrm{S})
$$

(IV) rate $=\frac{\mathrm{k}[\mathrm{x}]^{2}}{\mathrm{x}_{\mathrm{s}}+[\mathrm{x}]}$

$$
\begin{aligned}
& {[\mathrm{x}] \gg \mathrm{x}_{\mathrm{s}} \Rightarrow \text { rate }=\mathrm{k}[\mathrm{x}]} \\
& \Rightarrow \quad(\mathrm{IV})-(\mathrm{Q}),(\mathrm{T})
\end{aligned}
$$

Ans. (A)
16. LIST-I contains compounds and LIST-II contains reaction

LIST-I
(I) $\mathrm{H}_{2} \mathrm{O}_{2}$
(II) $\mathrm{Mg}(\mathrm{OH})_{2}$
(III) BaCl_{2}
(IV) CaCO_{3}

LIST-II

(P) $\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow$
(Q) $\mathrm{BaO}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$
(R) $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{MgCl}_{2}$
(S) $\mathrm{BaO}_{2}+\mathrm{HCl} \rightarrow$
(T) $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow$

Match each compound in LIST - I with its formation reaction(s) in LIST-II, and choose the correct option
(A) I \rightarrow Q; II \rightarrow P; III \rightarrow S; IV $\rightarrow \mathrm{R}$
(B) I \rightarrow T; II \rightarrow P; III \rightarrow Q; IV $\rightarrow \mathrm{R}$
(C) I \rightarrow T; II \rightarrow R; III \rightarrow Q; IV \rightarrow P
(D) I \rightarrow Q; II \rightarrow R; III \rightarrow S; IV $\rightarrow \mathrm{P}$

Ans. (D)
Sol. (P) $\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}+2 \mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{CaCO}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
(Q) $\mathrm{BaO}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{BaSO}_{4}$
(R) $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{MgCl}_{2} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{CaCl}_{2}$
(S) $\mathrm{BaO}_{2}+2 \mathrm{HCl} \rightarrow \mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{O}_{2}$
(T) $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow 2 \mathrm{CaCO}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
17. LIST-I contains metal species and LIST-II contains their properties.

LIST-I
(I) $\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{4-}$
(II) $\left[\mathrm{RuCl}_{6}\right]^{2-}$
(III) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(IV) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

LIST-II
(P) $t_{2 g}$ orbitals contain 4 electrons
(Q) μ (spin-only) $=4.9 \mathrm{BM}$
(R) low spin complex ion
(S) metal ion in 4+ oxidation state
(T) d^{4} species
[Given : Atomic number of $\mathrm{Cr}=24, \mathrm{Ru}=44, \mathrm{Fe}=26$]
Metal each metal species in LIST-I with their properties in LIST-II, and choose the correct option
(A) I \rightarrow R, T; II \rightarrow P, S; III \rightarrow Q, T; IV \rightarrow P, Q
(B) I $\rightarrow \mathrm{R}, \mathrm{S} ; \mathrm{II} \rightarrow \mathrm{P}, \mathrm{T} ; \mathrm{III} \rightarrow \mathrm{P}, \mathrm{Q} ;$ IV $\rightarrow \mathrm{Q}, \mathrm{T}$
(C) I \rightarrow P, R; II \rightarrow R, S; III \rightarrow R, T; IV \rightarrow P, T
(D) I $\rightarrow \mathrm{Q}, \mathrm{T} ; \mathrm{II} \rightarrow \mathrm{S}, \mathrm{T} ; \mathrm{III} \rightarrow \mathrm{P}, \mathrm{T} ; \mathrm{IV} \rightarrow \mathrm{Q}, \mathrm{R}$

Ans. (A)

Sol. (1) $\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{4-}$
$\mathrm{Cr}^{+2}=[\mathrm{Ar}]_{18} 3 \mathrm{~d}^{4} 4 \mathrm{~s}^{0}$; low spin complex
$\begin{array}{cccc}- & \overline{\Delta_{0}}>P^{e_{g}^{0}} \\ \text { 1上 } & 1 \downarrow & 1 & t_{2 g}^{4}\end{array}$
P,R,T
(2) $\left[\mathrm{RuCl}_{6}\right]^{2-}$
$\mathrm{Ru}^{+4}=[\mathrm{Kr}]_{36} 4 \mathrm{~d}^{4} 5 \mathrm{~s}^{0}$; low spin complex
$\begin{array}{ccc}-\uparrow \Delta_{0}>\bar{P} & e_{g}^{0} \\ 1 & 1 & t_{2 g}^{4}\end{array}$
P,R,S,T
(3) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
$\mathrm{Cr}^{+2}=[\mathrm{Ar}]_{18} 3 \mathrm{~d}^{4} 4 \mathrm{~s}^{0} ;$ high spin complex

Q,T
(4) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
$\mathrm{Fe}^{+2}=[\mathrm{Ar}]_{18} 3 \mathrm{~d}^{6} ;$ High spin complex

P, Q
18. Match the compounds in LIST-I with the observation in LIST-II, and choose the correct option.

LIST-I

(I) Aniline
(II) o-Cresol
(III) Cysteine

LIST-II

(P) Sodium fusion extract of the compound on boiling with FeSO_{4}, followed by acidification with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$, gives Prussian blue color.
(Q) Sodium fusion extract of the compound on treatment with sodium nitroprusside gives blood red color.
(R) Addition of the compound to a saturated solution of NaHCO_{3} results in effervescence.
(IV) Coprolactam
(S) The compound reacts with bromine water to give a white precipitate.
(T) Treating the compound with neutral FeCl_{3} solution produces violet color.
(A) I \rightarrow P, Q; II \rightarrow S; III $\rightarrow \mathrm{Q}, \mathrm{R} ;$ IV $\rightarrow \mathrm{P}$
(B) I $\rightarrow \mathrm{P} ; \mathrm{II} \rightarrow \mathrm{R}, \mathrm{S}$; III $\rightarrow \mathrm{R}$; IV $\rightarrow \mathrm{Q}, \mathrm{S}$
(C) I \rightarrow Q, S; II \rightarrow P, T; III \rightarrow P; IV \rightarrow S
(D) I $\rightarrow \mathrm{P}, \mathrm{S}$; II $\rightarrow \mathrm{T}$; III $\rightarrow \mathrm{Q}, \mathrm{R} ; \mathrm{IV} \rightarrow \mathrm{P}$

Ans. (D)

Sol.

: Blue colour in Lassign test due to presence of N
Aniline

 : Blue colour in Lassign test due to presence of N

Caprolactam

