FINAL JEE(Advanced) EXAMINATION - 2022

(Held On Sunday 28th AUGUST, 2022)

PAPER-1

TEST PAPER WITH SOLUTION

CHEMISTRY

SECTION-1 : (Maximum Marks : 24)

- This section contains **EIGHT (08)** questions.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. If the numerical value has more than two decimal places, **truncate/round-off** the value to **TWO** decimal places.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>: *Full Marks* :+3 ONLY if the correct numerical value is entered; *Zero Marks* : 0 In all other cases.
- 1. 2 mol of Hg(g) is combusted in a fixed volume bomb calorimeter with excess of O₂ at 298 K and 1 atm into HgO(s). During the reaction, temperature increases from 298.0 K to 312.8 K. If heat capacity of the bomb calorimeter and enthalpy of formation of Hg(g) are 20.00 kJ K⁻¹ and 61.32 kJ mol⁻¹ at 298 K, respectively, the calculated standard molar enthalpy of formation of HgO(s) at 298 K is X kJ mol⁻¹. The value of |X| is _____. [Given : Gas constant R = 8.3 J K⁻¹ mol⁻¹]

Ans. (90.39)

Saral

Sol. $Q_{rxn} = C\Delta T$

 $\begin{aligned} |\Delta U| &\times 2 = 20 \times 14.8 \\ |\Delta U| &= 148 \text{ kJ/mol} \\ \Delta U &= -148 \text{ kJ/mol} \\ \text{Hg}(g) &+ \frac{1}{2} \text{O}_2(g) \longrightarrow \text{HgO}(s) : \Delta U = -148 \text{ kJ/mol} \\ \Delta H &= \Delta U + \Delta n_g \text{ RT} \\ &= -148 - \frac{3}{2} \times \frac{8.3}{1000} \times 298 = -151.7101 \\ \text{Hg}(l) &+ \frac{1}{2} \text{O}_2(g) \longrightarrow \text{HgO}(s) \\ \Delta H &= -151.7101 + 61.32 = -90.39 \text{ kJ/mol} \\ \text{Ans. 90.39} \end{aligned}$

JEE(Advanced) 2022/Paper-1/Held on Sunday 28th AUGUST, 2022

<u> [™]Saral</u>

2. The reduction potential $(E^0, \text{ in V})$ of $MnO_4^-(aq)/Mn(s)$ is _____

[Given :
$$E_{(MnO_{4}^{-}(aq)/MnO_{2}(s))}^{0} = 1.68 \text{ V}$$
; $E_{(MnO_{2}(s)/Mn^{2+}(aq))}^{0} = 1.21 \text{ V}$; $E_{(Mn^{2+}(aq)/Mn(s))}^{0} = -1.03 \text{ V}$]

Sol.
$$\operatorname{MnO_4}^{+7} \xrightarrow{(3)} \operatorname{MnO_2}^{+4} \xrightarrow{(2)} \operatorname{Mn}^{+2} \xrightarrow{(2)} \operatorname{Mn}^{-7}$$

For the required reaction $\Delta G^{\circ} = \Delta G^{\circ}_{1} + \Delta G^{\circ}_{2} + \Delta G^{\circ}_{3}$

$$\Rightarrow 7 \times E = 1.68 \times 3 + 1.21 \times 2 + (-1.03) \times 2$$

$$E = \frac{5.4}{7} = 0.7714$$

Ans. = 0.77

A solution is prepared by mixing 0.01 mol each of H₂CO₃, NaHCO₃, Na₂CO₃, and NaOH in 100 mL of water. pH of the resulting solution is _____.

[Given : pK_{a1} and pK_{a2} of H₂CO₃ are 6.37 and 10.32, respectively ; log 2 = 0.30]

Ans. (10.02)

	H_2CO_3	+ NaOH –	\rightarrow NaHCO ₃ + H ₂ O
Milli moles	10	10	-
At end	0	0	10 + 10 = 20

Final mixture has 20 milli moles NaHCO3 and 10 milli moles Na2CO3

$$pH = pKa_{2} + \log \frac{Salt}{Acid}$$

$$pH = pKa_{2} + \log \left(\frac{10}{20}\right) \qquad [Buffer : Na_{2}CO_{3} + NaHCO_{3}]$$

$$= 10.32 - \log 2 = 10.02$$

4. The treatment of an aqueous solution of 3.74 g of Cu(NO₃)₂ with excess KI results in a brown solution along with the formation of a precipitate. Passing H₂S through this brown solution gives another precipitate X. The amount of X (in g) is _____.

[Given : Atomic mass of H = 1, N = 14, O = 16, S = 32, K = 39, Cu = 63, I = 127]

Ans. (0.32)

Sol. $2Cu(NO_3)_2 + 5KI \longrightarrow Cu_2I_2 + KI_3 + 4KNO_3$ $0.02 \qquad 0.01$ $KI_3 + H_2S \longrightarrow S \downarrow + KI + 2HI$ $0.01 \qquad 0.01$ $n_S = 0.01$ mole weight of sulphur = $32 \times 0.01 = 0.32$ gm

JEE(Advanced) 2022/Paper-1/Held on Sunday 28th AUGUST, 2022

2

<mark>∛Saral</mark>

5. Dissolving 1.24 g of white phosphorous in boiling NaOH solution in an inert atmosphere gives a gas \mathbf{Q} . The amount of CuSO₄ (in g) required to completely consume the gas \mathbf{Q} is _____.

[Given : Atomic mass of H = 1, O = 16, Na = 23, P = 31, S = 32, Cu = 63]

Ans. (2.38 / 2.39)

Sol. Mole of $P_4 = \frac{1.24}{31 \times 4} = 0.01$ $P_4 + 3NaOH + 3H_2O \longrightarrow PH_3 + 3NaH_2PO_2$ $0.01 \text{ mole} \qquad 0.01 \text{ mole}$ $2PH_3 + 3CuSO_4 \rightarrow Cu_3P_2 + 3H_2SO_4$ $0.01 \quad \frac{3}{2} \times 0.01$ $= \frac{0.03}{2} \text{ moles}$ $W_{CuSO_4} = \frac{0.03}{2} \times 159 = 2.385 \text{ gm}$ Ans. = 2.38 or 2.39 6. Consider the following reaction.

$$\bigcup_{\text{Br}} \xrightarrow{\text{red phosphorous}} \mathbf{R} \text{ (major product)}$$

On estimation of bromine in 1.00 g of **R** using Carius method, the amount of AgBr formed (in g) is

[Given : Atomic mass of H = 1, C = 12, O = 16, P = 31, Br = 80, Ag = 108] Ans. (1.50)

Sol.
$$OH$$

Br Br_2 $M.W. = 250 \text{ g/mol}$
Br (R)

1g R →
$$\frac{1}{250}$$
 moles
No. of Br Atoms → $\frac{2}{250}$ moles
Moles of AgBr → $\frac{2}{250}$ moles
Mass of AgBr = $\frac{2}{250} \times (108 + 80) = 1.504$

JEE(Advanced) 2022/Paper-1/Held on Sunday 28th AUGUST, 2022

3

ੱSaral हैं, तो सब सरल है।

7. The weight p

The weight percentage of hydrogen in \mathbf{Q} , formed in the following reaction sequence, is

[Given : Atomic mass of H = 1, C = 12, N = 14, O = 16, S = 32, Cl = 35]

Ans. (1.31)

If the reaction sequence given below is carried out with 15 moles of acetylene, the amount of the product D formed (in g) is _____.

$$HC \equiv CH \xrightarrow{\text{(red hot)}} A \xrightarrow{H_3C} Cl \xrightarrow{Cl} B \xrightarrow{1. O_2} 2. H_3O^+ Cl \xrightarrow{CH_3COCl} D$$

$$HC \equiv CH \xrightarrow{(red hot)} A \xrightarrow{H_3C} Cl \xrightarrow{AlCl_3} B \xrightarrow{(50\%)} Cl \xrightarrow{CH_3COCl} D$$

$$HC \equiv CH \xrightarrow{(red hot)} A \xrightarrow{H_3C} Cl \xrightarrow{CH_3COCl} D$$

$$HC \equiv CH \xrightarrow{(red hot)} A \xrightarrow{H_3C} Cl \xrightarrow{Cl} B \xrightarrow{(red hot)} Cl \xrightarrow{$$

The yields of A, B, C and D are given in parentheses.

[Given : Atomic mass of H = 1, C = 12, O = 16, Cl = 35]

Ans. (136)

Sol.

JEE(Advanced) 2022/Paper-1/Held on Sunday 28th AUGUST, 2022

***Saral** हैं, तो सब सरल है।

5

SECTION-2 : (Maximum Marks : 24)

- This section contains **SIX (06)** questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

1 mb w or to cuon que	ouon	will be evaluated <u>decording to the following marking benefite</u> .
Full Marks	:+4	ONLY if (all) the correct option(s) is(are) chosen;
Partial Marks	: +3	If all the four options are correct but ONLY three options are chosen;
Partial Marks	: +2	If three or more options are correct but ONLY two options are chosen,
		both of which are correct;
Partial Marks	: +1	If two or more options are correct but ONLY one option is chosen and it
		is a correct option;
Zero Marks	: 0	If none of the options is chosen (i.e. the question is unanswered);
Negative Marks	: -2	In all other cases.
-		

- 9. For diatomic molecules, the correct statement(s) about the molecular orbitals formed by the overlap to two $2p_z$ orbitals is(are)
 - (A) σ orbital has a total of two nodal planes.
 - (B) σ^* orbital has one node in the *xz*-plane containing the molecular axis.
 - (C) π orbital has one node in the plane which is perpendicular to the molecular axis and goes through the center of the molecule.
 - (D) π^* orbital has one node in the *xy*-plane containing the molecular axis.

Ans. (A,D)

JEE(Advanced) 2022/Paper-1/Held on Sunday 28th AUGUST, 2022

***Saral** हैं, तो सब सरल

One node in xy plane containing the molecular axis

- **10.** The correct option(s) related to adsorption processes is(are)
 - (A) Chemisorption results in a unimolecular layer.
 - (B) The enthalpy change during physisorption is in the range of 100 to 140 kJ mol⁻¹.
 - (C) Chemisorption is an endothermic process.
 - (D) Lowering the temperature favors physisorption processes.

Ans. (A,D)

- Sol. (A) Chemisorption is unimolecular layered.
 - (B) Enthalpy of physisorption is much less in magnitude.
 - (C) Chemisorption of gases on solids is exothermic.
 - (D) As physisorption is exothermic so lowering temperature favours it.
- 11. The electrochemical extraction of aluminum from bauxite ore involves.
 - (A) the reaction of Al_2O_3 with coke (C) at a temperature > 2500°C.
 - (B) the neutralization of aluminate solution by passing CO₂ gas to precipitate hydrated alumina (Al₂O₃.3H₂O)
 - (C) the dissolution of Al_2O_3 in hot aqueous NaOH.
 - (D) the electrolysis of Al_2O_3 mixed with Na_3AlF_6 to give Al and CO_2 .

Ans. (B,C,D)

Sol. (A) Electrochemical extraction of Aluminum from bauxite done below 2500°C

(B) $2Na[Al(OH)_4]_{aq.} + 2CO_{2(g)} \rightarrow Al_2O_3.3H_2O_{(s)} \downarrow + 2NaHCO_{3(aq.)}$

The sodium aluminate present in solution is neutralised by passing CO₂ gas and hydrated Al₂O₃ is precipitated.

(C) $Al_2O_{3(s)} + 2NaOH_{(aq.)} + 3H_2O_{(l)} \rightarrow 2Na[Al(OH)_4]_{aq.}$

Concentration of bauxite is carried out by heating the powdered ore with hot concentrated solution of NaOH

(D) In metallurgy of aluminum, Al₂O₃ is mixed with Na₃AlF₆

JEE(Advanced) 2022/Paper-1/Held on Sunday 28th AUGUST, 2022

6

<mark>∛Saral</mark>

7

12. The treatment of galena with HNO₃ produces a gas that is

- (A) paramagnetic (B) bent in geometry
- (C) an acidic oxide (D) colorless
- Ans. (A,D)
- **Sol.** $3PbS + 8HNO_3 \rightarrow 3Pb(NO_3)_2 + 2NO + 4H_2O + S$

 $NO \Rightarrow$ Neutral oxide, Paramagnetic, Linear geometry, Colourless gas

13. Considering the reaction sequence given below, the correct statement(s) is(are)

- (A) **P** can be reduced to a primary alcohol using NaBH₄.
- (B) Treating \mathbf{P} with conc. NH₄OH solution followed by acidification gives \mathbf{Q} .
- (C) Treating \mathbf{Q} with a solution of NaNO₂ in aq. HCl liberates N₂.
- (D) \mathbf{P} is more acidic than CH₃CH₂COOH.

Ans. (B,C,D)

JEE(Advanced) 2022/Paper-1/Held on Sunday 28th AUGUST, 2022

***Saral** हैं, तो सब सरल है।

<u> [™]Saral</u>

14. Consider the following reaction sequence,

JEE(Advanced) 2022/Paper-1/Held on Sunday 28th AUGUST, 2022

***Saral** हैं, तो सब सरल है।

SECTION-3 : (Maximum Marks : 12)

- This section contains **FOUR (04)** Matching List Sets.
- Each set has **ONE** Multiple Choice Question.
- Each set has **TWO** lists : **List-I** and **List-II**.
- List-I has Four entries (I), (II), (III) and (IV) and List-II has Five entries (P), (Q), (R), (S) and (T).
- FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>: *Full Marks* +3 **ONLV** if the option corresponding to the correct combination is c

Full Marks	+3 ONLY if the option corresponding to the correct combination is	chosen;
Zero Marks	0 If none of the options is chosen (i.e. the question is unanswered);	
Negative Marks	-1 In all other cases.	

15. Match the rate expressions in LIST-I for the decomposition of X with the corresponding profiles provided in LIST-II. X_s and k constants having appropriate units.

JEE(Advanced) 2022/Paper-1/Held on Sunday 28th AUGUST, 2022

***Saral** हैं, तो सब सरल है।

<mark>∛Saral</mark>

(A)
$$I \rightarrow P$$
; $II \rightarrow Q$; $III \rightarrow S$; $IV \rightarrow T$
(B) $I \rightarrow R$; $II \rightarrow S$; $III \rightarrow S$; $IV \rightarrow T$
(C) $I \rightarrow P$; $II \rightarrow Q$; $III \rightarrow Q$; $IV \rightarrow R$
(D) $I \rightarrow R$; $II \rightarrow S$; $III \rightarrow Q$; $IV \rightarrow R$

Sol. (I)
$$\operatorname{rate} = \frac{k[x]}{x_s + [x]} = \frac{k}{\frac{x_s}{[x]} + 1}$$

If $[x] \to \infty \Rightarrow \operatorname{rate} \to k \Rightarrow \operatorname{order} = 0$
 $\Rightarrow \quad (I) - (R), (P)$

(II)
$$[x] << x_s \Rightarrow rate = \frac{k[x]}{x_s} \Rightarrow order = 1$$

$$\Rightarrow \quad (II) - (Q), (T)$$

(III)
$$[x] >> x_s \Longrightarrow rate = k \Longrightarrow order = 0$$

$$\Rightarrow \quad (III) - (P), (S)$$

(IV) rate =
$$\frac{k[x]^2}{x + [x]}$$

$$[x] >> x_s \Rightarrow rate = k[x]$$

$$\Rightarrow (IV) - (Q), (T)$$

Ans. (A)

JEE(Advanced) 2022/Paper-1/Held on Sunday 28th AUGUST, 2022

ੱSaral हैं, तो सब सरल है।

16. LIST-I contains compounds and LIST-II contains reaction

LIST-I	LIST-II
(I) H ₂ O ₂	(P) Mg(HCO ₃) ₂ + Ca(OH) ₂ \rightarrow
(II) Mg(OH) ₂	(Q) $BaO_2 + H_2SO_4 \rightarrow$
(III) BaCl ₂	(R) $Ca(OH)_2 + MgCl_2$
(IV) CaCO ₃	(S) $BaO_2 + HCl \rightarrow$
	(T) $Ca(HCO_3)_2 + Ca(OH)_2 \rightarrow$

Match each compound in LIST – I with its formation reaction(s) in LIST-II, and choose the correct option

(A) $I \rightarrow Q$; $II \rightarrow P$; $III \rightarrow$	S; $IV \rightarrow R$	(B) I -	\rightarrow T; II \rightarrow I	P; III →	Q; IV →	• R
(C) I \rightarrow T; II \rightarrow R; III \rightarrow	Q; IV \rightarrow P	(D) I -	\rightarrow Q; II \rightarrow]	R; III —	→ S; IV —	> P

Ans. (D)

Sol. (P)
$$Mg(HCO_3)_2 + 2Ca(OH)_2 \rightarrow Mg(OH)_2 + 2CaCO_3 + 2H_2O_3$$

 $(Q) BaO_2 + H_2SO_4 \rightarrow H_2O_2 + BaSO_4$

- $(R) Ca(OH)_2 + MgCl_2 \rightarrow Mg(OH)_2 + CaCl_2$
- (S) $BaO_2 + 2HCl \rightarrow BaCl_2 + H_2O_2$

LIST-I

- (T) $Ca(HCO_3)_2 + Ca(OH)_2 \rightarrow 2CaCO_3 + 2H_2O$
- 17. LIST-I contains metal species and LIST-II contains their properties.

LIST-II

(I) $[Cr(CN)_6]^{4-}$	(P) t_{2g} orbitals contain 4 electrons
(II) $[\operatorname{RuCl}_6]^{2-}$	(Q) μ (spin-only) = 4.9 BM
(III) $[Cr(H_2O)_6]^{2+}$	(R) low spin complex ion
$(IV) [Fe(H_2O)_6]^{2+}$	(S) metal ion in 4+ oxidation state
	(T) d^4 species

[Given : Atomic number of Cr = 24, Ru = 44, Fe = 26]

Metal each metal species in LIST-I with their properties in LIST-II, and choose the correct option

(A)
$$I \rightarrow R, T; II \rightarrow P, S; III \rightarrow Q, T; IV \rightarrow P, Q$$

- (B) $I \rightarrow R, S; II \rightarrow P, T; III \rightarrow P, Q; IV \rightarrow Q, T$
- (C) $I \rightarrow P, R; II \rightarrow R, S; III \rightarrow R, T; IV \rightarrow P, T$
- (D) $I \rightarrow Q, T; II \rightarrow S, T; III \rightarrow P, T; IV \rightarrow Q, R$

Ans. (A)

Saral **Sol.** (1) $[Cr(CN)_6]^{4-}$ $Cr^{+2} = [Ar]_{18} 3d^4 4s^0$; low spin complex $\begin{array}{c} & \mathbf{e}_{g}^{0} \\ \uparrow \Delta_{o} > \mathsf{P} \\ \underline{1} & 1 \\ \mathbf{1} & \mathsf{t}_{2g}^{4} \end{array}$ <u>1ŀ</u> P,R,T (2) $[RuCl_6]^{2-}$ $Ru^{+4} = [Kr]_{36}4d^45s^0$; low spin complex $\begin{array}{c} - & e_{g}^{0} \\ 1 & 1 & t_{2g}^{4} \end{array}$ P,R,S,T (3) $[Cr(H_2O)_6]^{2+}$ $Cr^{+2} = [Ar]_{18}3d^44s^0$; high spin complex $\begin{array}{c} \underline{1} \\ \underline$ Q,T (4) $[Fe(H_2O)_6]^{2+}$ $Fe^{+2} = [Ar]_{18}3d^6$; High spin complex

$$\frac{1}{1k} \quad \frac{1}{1} \quad \frac{1}{2} \quad e_g^2$$

$$\frac{1}{1k} \quad \frac{1}{1} \quad \frac{1}{2} \quad t_{2g}^4$$
P O

18. Match the compounds in LIST-I with the observation in LIST-II, and choose the correct option.

LIST-I	LIST-II
(I) Aniline	(P) Sodium fusion extract of the compound on
	boiling with FeSO ₄ , followed by acidification
	with conc. H ₂ SO ₄ , gives Prussian blue color.
(II) o-Cresol	(Q) Sodium fusion extract of the compound on
	treatment with sodium nitroprusside gives
	blood red color.
(III) Cysteine	(R) Addition of the compound to a saturated
	solution of NaHCO ₃ results in effervescence.

JEE(Advanced) 2022/Paper-1/Held on Sunday 28th AUGUST, 2022

12

- (S) The compound reacts with bromine water to give a white precipitate.
- (T) Treating the compound with neutral FeCl₃solution produces violet color.

(A)
$$I \rightarrow P$$
, Q; $II \rightarrow S$; $III \rightarrow Q$, R; $IV \rightarrow P$
(B) $I \rightarrow P$; $II \rightarrow R$, S; $III \rightarrow R$; $IV \rightarrow Q$, S
(C) $I \rightarrow Q$, S; $II \rightarrow P$, T; $III \rightarrow P$; $IV \rightarrow S$
(D) $I \rightarrow P$, S; $II \rightarrow T$; $III \rightarrow Q$, R; $IV \rightarrow P$

Ans. (D)

 NH_2

Aniline

Me OH o-Cresol OH :Violet colour with FeCl₃ due to presence of phenolic OH

: It gives blod red colour with NaSCN

: Blue colour in Lassign test due to presence of N

Caprolactam

JEE(Advanced) 2022/Paper-1/Held on Sunday 28th AUGUST, 2022

